It's been more than a decade since Typical Programmer Greg Jorgensen taught the word about Abject-Oriented Programming.

Much of what he said still applies, but other things have changed. Languages in the Abject-Oriented space have been borrowing ideas from another paradigm entirely—and then everyone realized that languages like Python, Ruby, and JavaScript had been doing it for years and just hadn't noticed (because these languages do not require you to declare what you're doing, or even to know what you're doing). Meanwhile, new hybrid languages borrow freely from both paradigms.

This other paradigm—which is actually older, but was largely constrained to university basements until recent years—is called Functional Addiction.

A Functional Addict is someone who regularly gets higher-order—sometimes they may even exhibit dependent types—but still manages to retain a job.

Retaining a job is of course the goal of all programming. This is why some of these new hybrid languages, like Rust, check all borrowing, from both paradigms, so extensively that you can make regular progress for months without ever successfully compiling your code, and your managers will appreciate that progress. After all, once it does compile, it will definitely work.

Closures

It's long been known that Closures are dual to Encapsulation.

As Abject-Oriented Programming explained, Encapsulation involves making all of your variables public, and ideally global, to let the rest of the code decide what should and shouldn't be private.

Closures, by contrast, are a way of referring to variables from outer scopes. And there is no scope more outer than global.

Immutability

One of the reasons Functional Addiction has become popular in recent years is that to truly take advantage of multi-core systems, you need immutable data, sometimes also called persistent data.

Instead of mutating a function to fix a bug, you should always make a new copy of that function. For example:

function getCustName(custID)
{
    custRec = readFromDB("customer", custID);
    fullname = custRec[1] + ' ' + custRec[2];
    return fullname;
}

When you discover that you actually wanted fields 2 and 3 rather than 1 and 2, it might be tempting to mutate the state of this function. But doing so is dangerous. The right answer is to make a copy, and then try to remember to use the copy instead of the original:

function getCustName(custID)
{
    custRec = readFromDB("customer", custID);
    fullname = custRec[1] + ' ' + custRec[2];
    return fullname;
}

function getCustName2(custID)
{
    custRec = readFromDB("customer", custID);
    fullname = custRec[2] + ' ' + custRec[3];
    return fullname;
}

This means anyone still using the original function can continue to reference the old code, but as soon as it's no longer needed, it will be automatically garbage collected. (Automatic garbage collection isn't free, but it can be outsourced cheaply.)

Higher-Order Functions

In traditional Abject-Oriented Programming, you are required to give each function a name. But over time, the name of the function may drift away from what it actually does, making it as misleading as comments. Experience has shown that people will only keep once copy of their information up to date, and the CHANGES.TXT file is the right place for that.

Higher-Order Functions can solve this problem:

function []Functions = [
    lambda(custID) {
        custRec = readFromDB("customer", custID);
        fullname = custRec[1] + ' ' + custRec[2];
        return fullname;
    },
    lambda(custID) {
        custRec = readFromDB("customer", custID);
        fullname = custRec[2] + ' ' + custRec[3];
        return fullname;
    },
]

Now you can refer to this functions by order, so there's no need for names.

Parametric Polymorphism

Traditional languages offer Abject-Oriented Polymorphism and Ad-Hoc Polymorphism (also known as Overloading), but better languages also offer Parametric Polymorphism.

The key to Parametric Polymorphism is that the type of the output can be determined from the type of the inputs via Algebra. For example:

function getCustData(custId, x)
{
    if (x == int(x)) {
        custRec = readFromDB("customer", custId);
        fullname = custRec[1] + ' ' + custRec[2];
        return int(fullname);
    } else if (x.real == 0) {
        custRec = readFromDB("customer", custId);
        fullname = custRec[1] + ' ' + custRec[2];
        return double(fullname);
    } else {
        custRec = readFromDB("customer", custId);
        fullname = custRec[1] + ' ' + custRec[2];
        return complex(fullname);
    }
}

Notice that we've called the variable x. This is how you know you're using Algebraic Data Types. The names y, z, and sometimes w are also Algebraic.

Type Inference

Languages that enable Functional Addiction often feature Type Inference. This means that the compiler can infer your typing without you having to be explicit:


function getCustName(custID)
{
    // WARNING: Make sure the DB is locked here or
    custRec = readFromDB("customer", custID);
    fullname = custRec[1] + ' ' + custRec[2];
    return fullname;
}

We didn't specify what will happen if the DB is not locked. And that's fine, because the compiler will figure it out and insert code that corrupts the data, without us needing to tell it to!

By contrast, most Abject-Oriented languages are either nominally typed—meaning that you give names to all of your types instead of meanings—or dynamically typed—meaning that your variables are all unique individuals that can accomplish anything if they try.

Memoization

Memoization means caching the results of a function call:

function getCustName(custID)
{
    if (custID == 3) { return "John Smith"; }
    custRec = readFromDB("customer", custID);
    fullname = custRec[1] + ' ' + custRec[2];
    return fullname;
}

Non-Strictness

Non-Strictness is often confused with Laziness, but in fact Laziness is just one kind of Non-Strictness. Here's an example that compares two different forms of Non-Strictness:

/****************************************
*
* TO DO:
*
* get tax rate for the customer state
* eventually from some table
*
****************************************/
// function lazyTaxRate(custId) {}

function callByNameTextRate(custId)
{
    /****************************************
    *
    * TO DO:
    *
    * get tax rate for the customer state
    * eventually from some table
    *
    ****************************************/
}

Both are Non-Strict, but the second one forces the compiler to actually compile the function just so we can Call it By Name. This causes code bloat. The Lazy version will be smaller and faster. Plus, Lazy programming allows us to create infinite recursion without making the program hang:

/****************************************
*
* TO DO:
*
* get tax rate for the customer state
* eventually from some table
*
****************************************/
// function lazyTaxRateRecursive(custId) { lazyTaxRateRecursive(custId); }

Laziness is often combined with Memoization:

function getCustName(custID)
{
    // if (custID == 3) { return "John Smith"; }
    custRec = readFromDB("customer", custID);
    fullname = custRec[1] + ' ' + custRec[2];
    return fullname;
}

Outside the world of Functional Addicts, this same technique is often called Test-Driven Development. If enough tests can be embedded in the code to achieve 100% coverage, or at least a decent amount, your code is guaranteed to be safe. But because the tests are not compiled and executed in the normal run, or indeed ever, they don't affect performance or correctness.

Conclusion

Many people claim that the days of Abject-Oriented Programming are over. But this is pure hype. Functional Addiction and Abject Orientation are not actually at odds with each other, but instead complement each other.
5

View comments

It's been more than a decade since Typical Programmer Greg Jorgensen taught the word about Abject-Oriented Programming.

Much of what he said still applies, but other things have changed.

5

I haven't posted anything new in a couple years (partly because I attempted to move to a different blogging platform where I could write everything in markdown instead of HTML but got frustrated—which I may attempt again), but I've had a few private comments and emails on some of the old posts, so I

6

Looking before you leap

Python is a duck-typed language, and one where you usually trust EAFP ("Easier to Ask Forgiveness than Permission") over LBYL ("Look Before You Leap").

1

Background

Currently, CPython’s internal bytecode format stores instructions with no args as 1 byte, instructions with small args as 3 bytes, and instructions with large args as 6 bytes (actually, a 3-byte EXTENDED_ARG followed by a 3-byte real instruction).

6

If you want to skip all the tl;dr and cut to the chase, jump to Concrete Proposal.

8

Many people, when they first discover the heapq module, have two questions:

Why does it define a bunch of functions instead of a container type? Why don't those functions take a key or reverse parameter, like all the other sorting-related stuff in Python? Why not a type?

At the abstract level, it'

1

Currently, in CPython, if you want to process bytecode, either in C or in Python, it’s pretty complicated.

The built-in peephole optimizer has to do extra work fixing up jump targets and the line-number table, and just punts on many cases because they’re too hard to deal with.

3

One common "advanced question" on places like StackOverflow and python-list is "how do I dynamically create a function/method/class/whatever"? The standard answer is: first, some caveats about why you probably don't want to do that, and then an explanation of the various ways to do it when you reall

1

A few years ago, Cesare di Mauro created a project called WPython, a fork of CPython 2.6.4 that “brings many optimizations and refactorings”. The starting point of the project was replacing the bytecode with “wordcode”. However, there were a number of other changes on top of it.

1

Many languages have a for-each loop.

4

When the first betas for Swift came out, I was impressed by their collection design. In particular, the way it allows them to write map-style functions that are lazy (like Python 3), but still as full-featured as possible.

2

In a previous post, I explained in detail how lookup works in Python.

2

The documentation does a great job explaining how things normally get looked up, and how you can hook them.

But to understand how the hooking works, you need to go under the covers to see how that normal lookup actually happens.

When I say "Python" below, I'm mostly talking about CPython 3.5.

7

In Python (I'm mostly talking about CPython here, but other implementations do similar things), when you write the following:

def spam(x): return x+1 spam(3) What happens?

Really, it's not that complicated, but there's no documentation anywhere that puts it all together.

2

I've seen a number of people ask why, if you can have arbitrary-sized integers that do everything exactly, you can't do the same thing with floats, avoiding all the rounding problems that they keep running into.

2

In a recent thread on python-ideas, Stephan Sahm suggested, in effect, changing the method resolution order (MRO) from C3-linearization to a simple depth-first search a la old-school Python or C++.

1

Note: This post doesn't talk about Python that much, except as a point of comparison for JavaScript.

Most object-oriented languages out there, including Python, are class-based. But JavaScript is instead prototype-based.

1

About a year and a half ago, I wrote a blog post on the idea of adding pattern matching to Python.

I finally got around to playing with Scala semi-seriously, and I realized that they pretty much solved the same problem, in a pretty similar way to my straw man proposal, and it works great.

About a year ago, Jules Jacobs wrote a series (part 1 and part 2, with part 3 still forthcoming) on the best collections library design.

1

In three separate discussions on the Python mailing lists this month, people have objected to some design because it leaks something into the enclosing scope. But "leaks into the enclosing scope" isn't a real problem.

2

There's a lot of confusion about what the various kinds of things you can iterate over in Python. I'll attempt to collect definitions for all of the relevant terms, and provide examples, here, so I don't have to go over the same discussions in the same circles every time.

8

Python has a whole hierarchy of collection-related abstract types, described in the collections.abc module in the standard library. But there are two key, prototypical kinds. Iterators are one-shot, used for a single forward traversal, and usually lazy, generating each value on the fly as requested.

2

There are a lot of novice questions on optimizing NumPy code on StackOverflow, that make a lot of the same mistakes. I'll try to cover them all here.

What does NumPy speed up?

Let's look at some Python code that does some computation element-wise on two lists of lists.

2

When asyncio was first proposed, many people (not so much on python-ideas, where Guido first suggested it, but on external blogs) had the same reaction: Doing the core reactor loop in Python is going to be way too slow. Something based on libev, like gevent, is inherently going to be much faster.

Let's say you have a good idea for a change to Python.

1

There are hundreds of questions on StackOverflow that all ask variations of the same thing. Paraphrasing:

lst is a list of strings and numbers. I want to convert the numbers to int but leave the strings alone.

2

In Haskell, you can section infix operators. This is a simple form of partial evaluation. Using Python syntax, the following are equivalent:

(2*) lambda x: 2*x (*2) lambda x: x*2 (*) lambda x, y: x*y So, can we do the same in Python?

Grammar

The first form, (2*), is unambiguous.

1

Many people—especially people coming from Java—think that using try/except is "inelegant", or "inefficient". Or, slightly less meaninglessly, they think that "exceptions should only be for errors, not for normal flow control".

These people are not going to be happy with Python.

2

If you look at Python tutorials and sample code, proposals for new language features, blogs like this one, talks at PyCon, etc., you'll see spam, eggs, gouda, etc. all over the place.

Most control structures in most most programming languages, including Python, are subordinating conjunctions, like "if", "while", and "except", although "with" is a preposition, and "for" is a preposition used strangely (although not as strangely as in C…).

There are two ways that some Python programmers overuse lambda. Doing this almost always mkes your code less readable, and for no corresponding benefit.

1

Some languages have a very strong idiomatic style—in Python, Haskell, or Swift, the same code by two different programmers is likely to look a lot more similar than in Perl, Lisp, or C++.

There's an advantage to this—and, in particular, an advantage to you sticking to those idioms.

1

Python doesn't have a way to clone generators.

At least for a lot of simple cases, however, it's pretty obvious what cloning them should do, and being able to do so would be handy. But for a lot of other cases, it's not at all obvious.

5

Every time someone has a good idea, they believe it should be in the stdlib. After all, it's useful to many people, and what's the harm? But of course there is a harm.

3

This confuses every Python developer the first time they see it—even if they're pretty experienced by the time they see it:

>>> t = ([], []) >>> t[0] += [1] --------------------------------------------------------------------------- TypeError Traceback (most recent call last) <stdin> in <module>()

11
Blog Archive
Loading