It's been more than a decade since Typical Programmer Greg Jorgensen taught the word about Abject-Oriented Programming.

Much of what he said still applies, but other things have changed. Languages in the Abject-Oriented space have been borrowing ideas from another paradigm entirely—and then everyone realized that languages like Python, Ruby, and JavaScript had been doing it for years and just hadn't noticed (because these languages do not require you to declare what you're doing, or even to know what you're doing). Meanwhile, new hybrid languages borrow freely from both paradigms.

This other paradigm—which is actually older, but was largely constrained to university basements until recent years—is called Functional Addiction.

A Functional Addict is someone who regularly gets higher-order—sometimes they may even exhibit dependent types—but still manages to retain a job.

Retaining a job is of course the goal of all programming. This is why some of these new hybrid languages, like Rust, check all borrowing, from both paradigms, so extensively that you can make regular progress for months without ever successfully compiling your code, and your managers will appreciate that progress. After all, once it does compile, it will definitely work.

Closures

It's long been known that Closures are dual to Encapsulation.

As Abject-Oriented Programming explained, Encapsulation involves making all of your variables public, and ideally global, to let the rest of the code decide what should and shouldn't be private.

Closures, by contrast, are a way of referring to variables from outer scopes. And there is no scope more outer than global.

Immutability

One of the reasons Functional Addiction has become popular in recent years is that to truly take advantage of multi-core systems, you need immutable data, sometimes also called persistent data.

Instead of mutating a function to fix a bug, you should always make a new copy of that function. For example:

function getCustName(custID)
{
    custRec = readFromDB("customer", custID);
    fullname = custRec[1] + ' ' + custRec[2];
    return fullname;
}

When you discover that you actually wanted fields 2 and 3 rather than 1 and 2, it might be tempting to mutate the state of this function. But doing so is dangerous. The right answer is to make a copy, and then try to remember to use the copy instead of the original:

function getCustName(custID)
{
    custRec = readFromDB("customer", custID);
    fullname = custRec[1] + ' ' + custRec[2];
    return fullname;
}

function getCustName2(custID)
{
    custRec = readFromDB("customer", custID);
    fullname = custRec[2] + ' ' + custRec[3];
    return fullname;
}

This means anyone still using the original function can continue to reference the old code, but as soon as it's no longer needed, it will be automatically garbage collected. (Automatic garbage collection isn't free, but it can be outsourced cheaply.)

Higher-Order Functions

In traditional Abject-Oriented Programming, you are required to give each function a name. But over time, the name of the function may drift away from what it actually does, making it as misleading as comments. Experience has shown that people will only keep once copy of their information up to date, and the CHANGES.TXT file is the right place for that.

Higher-Order Functions can solve this problem:

function []Functions = [
    lambda(custID) {
        custRec = readFromDB("customer", custID);
        fullname = custRec[1] + ' ' + custRec[2];
        return fullname;
    },
    lambda(custID) {
        custRec = readFromDB("customer", custID);
        fullname = custRec[2] + ' ' + custRec[3];
        return fullname;
    },
]

Now you can refer to this functions by order, so there's no need for names.

Parametric Polymorphism

Traditional languages offer Abject-Oriented Polymorphism and Ad-Hoc Polymorphism (also known as Overloading), but better languages also offer Parametric Polymorphism.

The key to Parametric Polymorphism is that the type of the output can be determined from the type of the inputs via Algebra. For example:

function getCustData(custId, x)
{
    if (x == int(x)) {
        custRec = readFromDB("customer", custId);
        fullname = custRec[1] + ' ' + custRec[2];
        return int(fullname);
    } else if (x.real == 0) {
        custRec = readFromDB("customer", custId);
        fullname = custRec[1] + ' ' + custRec[2];
        return double(fullname);
    } else {
        custRec = readFromDB("customer", custId);
        fullname = custRec[1] + ' ' + custRec[2];
        return complex(fullname);
    }
}

Notice that we've called the variable x. This is how you know you're using Algebraic Data Types. The names y, z, and sometimes w are also Algebraic.

Type Inference

Languages that enable Functional Addiction often feature Type Inference. This means that the compiler can infer your typing without you having to be explicit:


function getCustName(custID)
{
    // WARNING: Make sure the DB is locked here or
    custRec = readFromDB("customer", custID);
    fullname = custRec[1] + ' ' + custRec[2];
    return fullname;
}

We didn't specify what will happen if the DB is not locked. And that's fine, because the compiler will figure it out and insert code that corrupts the data, without us needing to tell it to!

By contrast, most Abject-Oriented languages are either nominally typed—meaning that you give names to all of your types instead of meanings—or dynamically typed—meaning that your variables are all unique individuals that can accomplish anything if they try.

Memoization

Memoization means caching the results of a function call:

function getCustName(custID)
{
    if (custID == 3) { return "John Smith"; }
    custRec = readFromDB("customer", custID);
    fullname = custRec[1] + ' ' + custRec[2];
    return fullname;
}

Non-Strictness

Non-Strictness is often confused with Laziness, but in fact Laziness is just one kind of Non-Strictness. Here's an example that compares two different forms of Non-Strictness:

/****************************************
*
* TO DO:
*
* get tax rate for the customer state
* eventually from some table
*
****************************************/
// function lazyTaxRate(custId) {}

function callByNameTextRate(custId)
{
    /****************************************
    *
    * TO DO:
    *
    * get tax rate for the customer state
    * eventually from some table
    *
    ****************************************/
}

Both are Non-Strict, but the second one forces the compiler to actually compile the function just so we can Call it By Name. This causes code bloat. The Lazy version will be smaller and faster. Plus, Lazy programming allows us to create infinite recursion without making the program hang:

/****************************************
*
* TO DO:
*
* get tax rate for the customer state
* eventually from some table
*
****************************************/
// function lazyTaxRateRecursive(custId) { lazyTaxRateRecursive(custId); }

Laziness is often combined with Memoization:

function getCustName(custID)
{
    // if (custID == 3) { return "John Smith"; }
    custRec = readFromDB("customer", custID);
    fullname = custRec[1] + ' ' + custRec[2];
    return fullname;
}

Outside the world of Functional Addicts, this same technique is often called Test-Driven Development. If enough tests can be embedded in the code to achieve 100% coverage, or at least a decent amount, your code is guaranteed to be safe. But because the tests are not compiled and executed in the normal run, or indeed ever, they don't affect performance or correctness.

Conclusion

Many people claim that the days of Abject-Oriented Programming are over. But this is pure hype. Functional Addiction and Abject Orientation are not actually at odds with each other, but instead complement each other.
5

View comments

  1. great blog,Thank you for sharing such a great article..regarding The python its very much useful to all who want's to learn,writing skills are too good.
    python trainingpython online training

    ReplyDelete
  2. This comment has been removed by the author.

    ReplyDelete
  3. Thank you so much for sharing your knowledge..
    visit Best Python Course Jaipur

    ReplyDelete
  4. Hello there! My name is Haze and I would like to post an article on your website. Please let me know if there is such a possibility. Also, let me know the details about Guest Post submission on your website. Word count for the article, link insertion option, dofollow or nofollow link, should I provide a short bio for the author. Any other guidelines would be appreciated
    Best Wishes
    Haze Woodlock
    rebeccaagustino0@gmail.com

    ReplyDelete
  5. I thoroughly enjoyed your writing. I hope you return to blogging!

    ReplyDelete
Hybrid Programming
Hybrid Programming
5
Greenlets vs. explicit coroutines
Greenlets vs. explicit coroutines
6
ABCs: What are they good for?
ABCs: What are they good for?
1
A standard assembly format for Python bytecode
A standard assembly format for Python bytecode
6
Unified call syntax
Unified call syntax
8
Why heapq isn't a type
Why heapq isn't a type
1
Unpacked Bytecode
Unpacked Bytecode
3
Everything is dynamic
Everything is dynamic
1
Wordcode
Wordcode
1
For-each loops should define a new variable
For-each loops should define a new variable
4
Views instead of iterators
Views instead of iterators
2
How lookup _could_ work
How lookup _could_ work
2
How lookup works
How lookup works
7
How functions work
How functions work
2
Why you can't have exact decimal math
Why you can't have exact decimal math
2
Can you customize method resolution order?
Can you customize method resolution order?
1
Prototype inheritance is inheritance
Prototype inheritance is inheritance
1
Pattern matching again
Pattern matching again
The best collections library design?
The best collections library design?
1
Leaks into the Enclosing Scope
Leaks into the Enclosing Scope
2
Iterable Terminology
Iterable Terminology
8
Creating a new sequence type is easy
Creating a new sequence type is easy
2
Going faster with NumPy
Going faster with NumPy
2
Why isn't asyncio too slow?
Why isn't asyncio too slow?
Hacking Python without hacking Python
Hacking Python without hacking Python
1
How to detect a valid integer literal
How to detect a valid integer literal
2
Operator sectioning for Python
Operator sectioning for Python
1
If you don't like exceptions, you don't like Python
If you don't like exceptions, you don't like Python
2
Spam, spam, spam, gouda, spam, and tulips
Spam, spam, spam, gouda, spam, and tulips
And now for something completely stupid…
And now for something completely stupid…
How not to overuse lambda
How not to overuse lambda
1
Why following idioms matters
Why following idioms matters
1
Cloning generators
Cloning generators
5
What belongs in the stdlib?
What belongs in the stdlib?
3
Augmented Assignments (a += b)
Augmented Assignments (a += b)
11
Statements and Expressions
Statements and Expressions
3
An Abbreviated Table of binary64 Values
An Abbreviated Table of binary64 Values
1
IEEE Floats and Python
IEEE Floats and Python
Subtyping and Ducks
Subtyping and Ducks
1
Greenlets, threads, and processes
Greenlets, threads, and processes
6
Why don't you want getters and setters?
Why don't you want getters and setters?
8
The (Updated) Truth About Unicode in Python
The (Updated) Truth About Unicode in Python
1
How do I make a recursive function iterative?
How do I make a recursive function iterative?
1
Sockets and multiprocessing
Sockets and multiprocessing
Micro-optimization and Python
Micro-optimization and Python
3
Why does my 100MB file take 1GB of memory?
Why does my 100MB file take 1GB of memory?
1
How to edit a file in-place
How to edit a file in-place
ADTs for Python
ADTs for Python
5
A pattern-matching case statement for Python
A pattern-matching case statement for Python
2
How strongly typed is Python?
How strongly typed is Python?
How do comprehensions work?
How do comprehensions work?
1
Reverse dictionary lookup and more, on beyond z
Reverse dictionary lookup and more, on beyond z
2
How to handle exceptions
How to handle exceptions
2
Three ways to read files
Three ways to read files
2
Lazy Python lists
Lazy Python lists
2
Lazy cons lists
Lazy cons lists
1
Lazy tuple unpacking
Lazy tuple unpacking
3
Getting atomic writes right
Getting atomic writes right
Suites, scopes, and lifetimes
Suites, scopes, and lifetimes
1
Swift-style map and filter views
Swift-style map and filter views
1
Inline (bytecode) assembly
Inline (bytecode) assembly
Why Python (or any decent language) doesn't need blocks
Why Python (or any decent language) doesn't need blocks
18
SortedContainers
SortedContainers
1
Fixing lambda
Fixing lambda
2
Arguments and parameters, under the covers
Arguments and parameters, under the covers
pip, extension modules, and distro packages
pip, extension modules, and distro packages
Python doesn't have encapsulation?
Python doesn't have encapsulation?
3
Grouping into runs of adjacent values
Grouping into runs of adjacent values
dbm: not just for Unix
dbm: not just for Unix
How to use your self
How to use your self
1
Tkinter validation
Tkinter validation
7
What's the deal with ttk.Frame.__init__(self, parent)
What's the deal with ttk.Frame.__init__(self, parent)
1
Does Python pass by value, or by reference?
Does Python pass by value, or by reference?
9
"if not exists" definitions
"if not exists" definitions
repr + eval = bad idea
repr + eval = bad idea
1
Solving callbacks for Python GUIs
Solving callbacks for Python GUIs
Why your GUI app freezes
Why your GUI app freezes
21
Using python.org binary installations with Xcode 5
Using python.org binary installations with Xcode 5
defaultdict vs. setdefault
defaultdict vs. setdefault
1
Lazy restartable iteration
Lazy restartable iteration
2
Arguments and parameters
Arguments and parameters
3
How grouper works
How grouper works
1
Comprehensions vs. map
Comprehensions vs. map
2
Basic thread pools
Basic thread pools
Sorted collections in the stdlib
Sorted collections in the stdlib
4
Mac environment variables
Mac environment variables
Syntactic takewhile?
Syntactic takewhile?
4
Can you optimize list(genexp)
Can you optimize list(genexp)
MISRA-C and Python
MISRA-C and Python
1
How to split your program in two
How to split your program in two
How methods work
How methods work
3
readlines considered silly
readlines considered silly
6
Comprehensions for dummies
Comprehensions for dummies
Sockets are byte streams, not message streams
Sockets are byte streams, not message streams
9
Why you don't want to dynamically create variables
Why you don't want to dynamically create variables
7
Why eval/exec is bad
Why eval/exec is bad
Iterator Pipelines
Iterator Pipelines
2
Why are non-mutating algorithms simpler to write in Python?
Why are non-mutating algorithms simpler to write in Python?
2
Sticking with Apple's Python 2.7
Sticking with Apple's Python 2.7
Blog Archive
About Me
About Me
Loading
Dynamic Views theme. Powered by Blogger. Report Abuse.