Some languages have a very strong idiomatic style—in Python, Haskell, or Swift, the same code by two different programmers is likely to look a lot more similar than in Perl, Lisp, or C++.

There's an advantage to this—and, in particular, an advantage to you sticking to those idioms. It means that whenever you do violate the idioms, that's extra meaning in your code for free. That makes your code more concise and more readable at the same time, which is always nice.

In Python, in particular, many of PEP 8's recommendations are followed nearly ubiquitously by experienced Python developers. (Certain domains that have their own overriding recommendations—NumPy-based scientific and numeric code, Django-based web applications, internal code at many large corporations, etc.—but in those cases, it's just a matter of some different idioms to follow; the situation is otherwise the same.) So, it's worth following the same recommendations if you ever want anyone else to read your code (whether because they're submitting patches, taking over maintenance, or helping you with it on StackOverflow).

Example

One of PEP 8's recommendations is that you test for empty sequences with "if not seq:". But occasionally, you have a variable that could be either None or a list, and you want to handle empty lists differently from None. Or you have a variable that absolutely should not be a tuple, only a list, and if someone violated that, an exception would be better than doing the wrong thing. You can probably think of other good cases. In all those cases, it makes a lot more sense to write "if seq == []:".

If you've followed PEP 8's recommendations throughout your code, and then you write "if seq == []:" in one function, it will be obvious to the reader that there's something special going on, and they'll quickly be able to figure out what it is.

But if you've ignored the recommendations and used "if seq == []:" all over, or, worse, mixing "if not seq:", "if seq == []:", "if len(seq) == 0:", etc. without rhyme or reason, then "if seq == []:" has no such meaning. Either the reader has to look at every single comparison and figure out what you're really testing for, or just assume that none of them have anything worth looking at.

Of course you can work around that. You can add a comment, or an unnecessary but explicit test for None, to provide the same signal. But that's just extra noise cluttering up your code. If you only cry wolf when there's an actual wolf, crying wolf is all you ever have to do.

1

View comments

It's been more than a decade since Typical Programmer Greg Jorgensen taught the word about Abject-Oriented Programming.

Much of what he said still applies, but other things have changed.
I haven't posted anything new in a couple years (partly because I attempted to move to a different blogging platform where I could write everything in markdown instead of HTML but got frustrated—which I may attempt again), but I've had a few private comments and emails on some of the old posts, so I
Looking before you leap

Python is a duck-typed language, and one where you usually trust EAFP ("Easier to Ask Forgiveness than Permission") over LBYL ("Look Before You Leap").
Background

Currently, CPython’s internal bytecode format stores instructions with no args as 1 byte, instructions with small args as 3 bytes, and instructions with large args as 6 bytes (actually, a 3-byte EXTENDED_ARG followed by a 3-byte real instruction).
If you want to skip all the tl;dr and cut to the chase, jump to Concrete Proposal.
Many people, when they first discover the heapq module, have two questions:

Why does it define a bunch of functions instead of a container type? Why don't those functions take a key or reverse parameter, like all the other sorting-related stuff in Python? Why not a type?

At the abstract level, it'
Currently, in CPython, if you want to process bytecode, either in C or in Python, it’s pretty complicated.

The built-in peephole optimizer has to do extra work fixing up jump targets and the line-number table, and just punts on many cases because they’re too hard to deal with.
One common "advanced question" on places like StackOverflow and python-list is "how do I dynamically create a function/method/class/whatever"? The standard answer is: first, some caveats about why you probably don't want to do that, and then an explanation of the various ways to do it when you reall
A few years ago, Cesare di Mauro created a project called WPython, a fork of CPython 2.6.4 that “brings many optimizations and refactorings”. The starting point of the project was replacing the bytecode with “wordcode”. However, there were a number of other changes on top of it.
Many languages have a for-each loop.
When the first betas for Swift came out, I was impressed by their collection design. In particular, the way it allows them to write map-style functions that are lazy (like Python 3), but still as full-featured as possible.
In a previous post, I explained in detail how lookup works in Python.
The documentation does a great job explaining how things normally get looked up, and how you can hook them.

But to understand how the hooking works, you need to go under the covers to see how that normal lookup actually happens.

When I say "Python" below, I'm mostly talking about CPython 3.5.
In Python (I'm mostly talking about CPython here, but other implementations do similar things), when you write the following:

def spam(x): return x+1 spam(3) What happens?

Really, it's not that complicated, but there's no documentation anywhere that puts it all together.
I've seen a number of people ask why, if you can have arbitrary-sized integers that do everything exactly, you can't do the same thing with floats, avoiding all the rounding problems that they keep running into.
In a recent thread on python-ideas, Stephan Sahm suggested, in effect, changing the method resolution order (MRO) from C3-linearization to a simple depth-first search a la old-school Python or C++.
Note: This post doesn't talk about Python that much, except as a point of comparison for JavaScript.

Most object-oriented languages out there, including Python, are class-based. But JavaScript is instead prototype-based.
About a year and a half ago, I wrote a blog post on the idea of adding pattern matching to Python.

I finally got around to playing with Scala semi-seriously, and I realized that they pretty much solved the same problem, in a pretty similar way to my straw man proposal, and it works great.
About a year ago, Jules Jacobs wrote a series (part 1 and part 2, with part 3 still forthcoming) on the best collections library design.
In three separate discussions on the Python mailing lists this month, people have objected to some design because it leaks something into the enclosing scope. But "leaks into the enclosing scope" isn't a real problem.
There's a lot of confusion about what the various kinds of things you can iterate over in Python. I'll attempt to collect definitions for all of the relevant terms, and provide examples, here, so I don't have to go over the same discussions in the same circles every time.
Python has a whole hierarchy of collection-related abstract types, described in the collections.abc module in the standard library. But there are two key, prototypical kinds. Iterators are one-shot, used for a single forward traversal, and usually lazy, generating each value on the fly as requested.
There are a lot of novice questions on optimizing NumPy code on StackOverflow, that make a lot of the same mistakes. I'll try to cover them all here.

What does NumPy speed up?

Let's look at some Python code that does some computation element-wise on two lists of lists.
When asyncio was first proposed, many people (not so much on python-ideas, where Guido first suggested it, but on external blogs) had the same reaction: Doing the core reactor loop in Python is going to be way too slow. Something based on libev, like gevent, is inherently going to be much faster.
Let's say you have a good idea for a change to Python.
Blog Archive
About Me
About Me
Loading
Dynamic Views theme. Powered by Blogger. Report Abuse.